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Introduction

In a previous paper Il] an attempt was made to contribute

toward a comprehensive and - hopefully - rigorous analytical

theory of linear viscoelastic behavior, comparable in scope and

character to the systematic body of general propositions that has

long been available in the classical theory of elastic solids.

The material contained in [1], which is confined to an isothermal

quasi-static treatment of the subject, includes: results concern-

ing the structure of the relevant constitutive relations and the

connection between various alternative versions of the stress-

strain law; conclusions regarding the nature of the time and

position dependence of solutions to the governing field equations;

integral, reciprocal, and uniqueness theorems; and theorems per-

taining to the integration of the field equations in terms of

complete systems of stress functions. Later on, Gurtin [2]

obtained generalizations to viscoelasticity theory of the known

variational principles of elastostatics. Also, certain results

appearing in (1] have since been extended to non-isothermal condi-

tions in [3],[4].

In the present paper we continue the project begun in (1]

and turn to the study of Green's functions in the isothermal

quasi-static theory of a homogeneous and isotropic viscoelastic

medium which obeys the general linear relaxation integral law.

1 Numbers in brackets refer to the list of publications at the

end of this paper.
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Our main objective in this connection is twofold: first, we aim

at integral representations for the solution of the standard

boundary-value problems, analogous to those originated in

elasticity theory by2 Betti, Volterra, Lauricella, and Somigliana;

second, we seek to apply such integral representations to a proof

of Saint-Venant's principle in a formulation that is the counter-

part in viscoelasticity of the elastostatic principle suggested

by von Mises [6] and established in [71.

The chief mathematical tool in this investigation is

once again supplied by the algebra and calculus of Stieltjes

convolutions developed in [1]. Further, some of the results on

linear viscoelasticity appearing in [11 are essential prerequisites

to our current purpose. For this reason, and in order to render

the present paper sensibly self-contained, we collect in Section I

various definitions and theorems, mostly adapted from [1], which

are needed repeatedly in the subsequent analysis.

In Section 2 we deal first with the problem of a con-

centrated load acting at a point of a viscoelastic solid that

occupies the entire space. The solution to this singular problem,

which is a generalization of Kelvin's problem in elastostatics,

is defined and deduced explicitly by means of a limit process

applied to the solution of a sequence of regular problems governed

by distributed body forces. The basic singular solution of the

2 See Love [51, Art. 169, for detailed references.
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field equations thus established is subsequently used to generate

the higher-order singularities appropriate to force doublets with

and without moment. Certain relevant properties of the singular

solutions arrived at in this section are studied in detail.

The results obtained in Section 2 are applied in Section 3

to the contruction of Green's functions and the derivation of

integral representations for the solution to the fundamental

boundary-value problems in linear viscoelasticity theory. Both

Section 2 and Section 3 are influenced by a partly parallel

treatment in (8] of the analogous topics in the classical equi-

librium theory of elastic solids.

The integral representations obtained in Section 3 are,

in turn, employed in Section 4 to prove a Saint-Venant principle

appropriate to viscoelastic solids within the theoretical frame-

work underlying this paper.
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1. Notation. Preliminaries.

In this section we cite - occasionally in a modified or

extended form adapted to our present needs - certain definitions

and results appearing in [1] that will be required repeatedly

later on.

Throughout this paper the letter E designates a three-

dimensional Euclidean space. The symbol Q, in the absence of

any qualifying restrictions, will denote an arbitrary region in

E that may be either .2Pn or closed. Further, we employ the

standard notation for closure; thus, if Q is open, i stands for

the closure of 1W. On the other hand, the letter R is consist-

ently reserved for a regular region in E, by which we mean an

open (not necessarily bounded or simply connected) region, the

boundary B of which consists of a finite number of non-intersect-

ing closed regular surfaces, the latter term being used in the

sense of Kellogg [9J(p.112). Since B is bounded even if R is

not, an unbounded R is of necessity an exterior region, i.e. a

region containing all sufficiently distant points. Note also

that B may have corners and edges. A point P of B will be

referred to as a regular boundary point if B possesses a tagigent

plane at P; by a regular subset of B we shall mean one that

consists exclusively of regular boundary points.

In the present investigation we have frequent occasion

to deal with real-valued functions of position and time, whose

domain of definition is the cartesian product of a region of
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space Q and an (open, closed, or half-open) interval of time,

for which we use the symbol 3. In this physical context we shall

denote by x, with the rectangular coordinates (xl,x 2 ,x3 ), the

position vector of points in Q, call t the time, and write 6XJ

for the appropriate domain of definition. Further, if f is a

function defined on Rx3, we write f(x,t) for the value of f at

(x,t) and use f(.,t) to designate the subsidiary mapping of

position that results from holding t fixed in Z. The analogous

interpretation applies to f(x,.). Finally, as far as the partial

space and time differentiation of f is concerned, we adopt the

notation
minf (t)

fXn) ..... AX tn (m,n = 0,1,2, ...)

m indices i 
a(t.)

f J......k(xt xidx xt (m=,1,2,"..)

m indices

with the understanding that all subscripts, unless otherwise

specified, henceforth have the range of the integers (1,2,3).

Turning to functions of the time alone, we define the

Heaviside unit step function by

(a) h(t) = 0 for tC-(-oo,O),
(1.2)

(b) h(t) = 1 for tE[O,oo)

and introduce the following convenient generalization of the

Heaviside function.
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Definition 1.1 (Functions in Heaviside Class HN). We say that

fE HN if f(t) is defined for all t 6 (-co,coD) ard

(a) f = 0 on (-oo,0),

(b) fQcN([o,()). 
('3)3

Further, if f E HN, we write

f(n)(0 ) . f(n)(o+) (n = OI,2,...N). UM

A useful extension of this definition to functions of

position and time is furnished by

Definition 1.2 (Functions in Class CMON or Class HMON).

(A) We say that fe CMpN(Qx) if f(x,t) is defined for

all (x,t) E xj and the functions

f (n) (m = O,l,2,...M; n = 0,Io2,...N) (1.5)
(m :-, n- .... 2 -N)

m indices

exist and are continuous on Q× .

(B) We a that f HM'N(Q) if f(x,t) Is defined for

all (xt) 6W<-0o, OD) af

(a) f = 0 on Qx(-co,o), 1
(b) frC C M,((jx[0oo,)). (1 6

Further, if f HNN(r), we write

f(n) ... ((!.... ( .=.

f.n) . .,o) . fn ,o+ (mm o,1,2,*.M; (1.7)

m indices mn = 0,,2, ""N).

3 If X is a set then CN(X) stands for the set of all functions
that are N times continuously differentiable on X.
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Next we collect some basic results from the theory of

Stieltjee convolutions. To this end suppose that T and * are

functions of position and time defined on Qx[O,co) and Qx(-o,co),

respectively, and assume that the Riemann-Stieltjes integral

t(2x, t) I q(x,t- )dF(x,) (1.8)

exists for all (x,t) rRx(-oD,co). Then the function CY so

defined on 2x(.coco) is said to be the Stieltjes convolution of

(P and *; we also write

-0= T*4 , '(xot) Ep[d.i](xot). (1.9)

In view of Theorem 1.2 and Theorem 1.6 of [1], we have

Theorem 1.1 (Properties of Stieltjes convolutions). Let

?rAIl(P) and *,GHNl((). Then:

(a) *d* C ( ) with K = min(MN);

(b) qV*dci = **c

(c) ,*d(**dG) = (,*d*).dg = 9*di*dg;

(d) qd(*IG) - y*d* + q,,*dQ;

(e) d = =on* 4P=Oor =o;

(f) *dh = ; t
(g) [qpd*](x,t) = *(x,O)(x,t) + f y(a,t-i)*,()do

for all (x,t)ECx[o,oo); 0

(h) (*.dG),i = *,i*dg + dQ',i if N > 1.

Theorem 1.3 and Theorem 1.4 of [1] may be combined into

Theorem 1.2 (Stieltjes inverse). Let yEH2 and y(O)0. Then

there exists a uniaue function a T q-I, which we call the
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Stieltjes inverse of T, such that -EH 1 and

T-d* = h on (-cooo). (1.10)

Finally, we state and prove a result on Stieltjes convolu-

tions that is closely related to Theorem 1.5 in [1].

Theorem 1.3 (Sequences of Stieltjes convolutions). Let Q be

bounded and let j n be a sequence of functions such that

(a) nE HO'O(e) (n = 1,2 ......

(b) (n _.>? as n ---> oo, uniformly on Ex[0,T]

1for every TQ[0,co). Further, suppose $GH I . Then,

In*d* -- qp*dl as n --* co, uniformly on ×x[O,T] for every

TG [O,co).

Proof. From (a),(b) follows pCO(Tx[O,co)). Choose TE[O,oo)

and define a sequence of functions 'Onj on 'X(-co,oo) by means of

-In lIn-ol , = n _ (n = .,2,--.). (1.11)

By (a) and (1.11), OnE HO'0 (K). Moreover, it clearly suffices to

show that, given b > 0, there exists an N(b) such that

n > N(b) . Ln(x,t) < b for (x,t)EC1x[O,T]. (1.12)

By (b) and (1.11), there exists N(b) such that for fixed To > 0,

n > N(b) = , n(xt)l < &/A for (2,t)C×x[O,T+To], (1.13)

where A = ve*(-To,T) is the total variation of * on [-T,T]. On

the other hand, from (1.11) and a familiar estimate of Stieltjes
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integrals ([10), p.232) follows

t) < max IgnIA for (xt)Ei~x(0,T]. (1.14)
i x[ 0, T+sT 0

But (1.13) and (1.14) imply the desired conclusion (1.12).

We have so far considered only scalar-valued functions

of position and time. Functions whose values are vectors or

higher-order tensors will consistently be denoted by underlined

letters. Thus, if the function v is defined on ' x J, its value

v(x,t) at position x and time t is a known tensor for every

(x,t)ECx3. Further, if the values of v are tensors of order

N > 1, we write vij .... i (N subscripts) for the components of v

in a rectangular cartesian coordinate frame and henceforth adopt

the usual summation convention for repeated subscripts. We say

that vE CMN(pxZ) or that vGHMIN(E) if and only if the corre-

sponding statements hold true for vij ..... k" Suppose u and v

are tensor-valued functions of the same order N > 1, while T is

scalar-valued, and let u,v,T have the same domain of definition.

We then adopt the notation

u*d = v V uij .... k*d9 - vij ..... k'

(l.15)
u*dv = uij ..... k*dvij ..... k I

provided the Stieltjes convolutions involved are meaningful.

We may now turn to preliminaries from the quasi-static

linear theory of viscoelasticity. For this purpose let u,_,

and 0, with the components uiIij, and oij, be the field histories
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of displacement, infinitesimal strain, and stress, respectively.

All of these field histories are to be regarded as functions of

position and time, defined on 'R(-ao,oo), where R is the (regular)

region of space occupied by the interior of the body in its unde-

formed state. We assume the body to be originally undisturbed in

the sense of the initial conditions

Ui 'ij = J = 0 on Ix(-oo,O). (1.16)

Next, we recall the relevant fundamental system of field

equations, which must hold throughout the space-time domain

Rx(-oo,oo). The linearized displacement-strain relations take

the form

2eli = ul,j + uj, , (1.17)

while the stress equations of euilibrium become

0 lJJ + F " 0 i dij , (1.18)

where F. stands for the components of the body-force density P.

In stating the stress-strain relations we shall make use of the

deviatoric components of stress and strain defined by

8 1 b (-9si M- OJ - e- 3 eij - -5 (1.19)

in which bij denotes the Kronecker delta. Furthermore, we shall

confine our attention to the isothermal relaxation integral law

appropriate to linear, homogeneous and isotropic, viscoelastic

solids. This constitutive law may now be written as

s j = eij*dGi , kk- k.*dO2 , (1.20)
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provided GI and G2. which are functions of the time alone,

designate the respective relaxation moduli in shear and isotropic

compression.

To the foregoing initial conditions and field equations

we adjoin the boundary conditions. From here on let

Si = djnj  (1.21)

denote the components of the traction vector S on a surface with

the outward unit normal vector n. The boundary conditions

governing the standard mixed problem then appear as

ui = ui on BIX(-cD,oo) , Si = SI on B2 x(-co,oo), (1.22)

in which B1 and B2 are complementary subsets of the boundary B

of R, while u and S represent prescribed surface displacements

and surface tractions. In the first boundary-value problem B2

is empty and the displacements are given on Bx(-o,co); in the

second boundary-value problem B1 is empty, the surface tractions

being assigned throughout BX(-co,o).

With a view toward an economical statement of the hypo-

theses underlying subsequent theorems we introduce

Definition 1.3 (States, regular viscoelastic states). If u is a

vector-valued - and e,o are second-order tensor-valued functions

of position and time defined on ax(-ooo), we call the ordered

array 3 = [ue, ] a state on Qx(-oo,oo) and denote ]2y

J(x,t) = [u(xt),_I(x,t),d(x,t)] the value of Iat (x,t).

We say that J= [u,e,_oJ is a regular viscoelastic state

on e×(-oo,co) correspondLng to the relaxation functions Gv(v-l,2)
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and the body-force density F, and write

~=(R,L,gj C(',-, 21  (1.23)

provided:

(a) uH 2 ' 1 (Q) and e.,._rd HO'0 (R), while GVG e2 with

Gv(0) > 0 (v- 1,2);

(b) u,_,o,F, Gv( v - 1,2) on the interior4 of Rx(-oo,co)

satisfy the field equations (1.17), (1.18), (1.19), (1.20);

(c) if R is an exterior region, then, as x a Ix-- co,

a(x,.) = o(x-l ) , (x,) = o(xl)

._(x,.) = O(x-2 ) , F(x,.) O(x-3 ),

uniformly on [0,T] for every T [O,ao).

If, in particular, F = 0 on £x(_o,o), we write

J = [(ue,.jY(R,O1 ,O2 ). (1.25)

In (1.24), as in the sequel, the notion of "order of

magnitude" is used in its standard mathematical connotation.

Thus, if v is defined on Rx[O,oo), E being an exterior region,

we write v(x, .) = O(xn) as x ---> oo, uniformly on [0,TJ for every

TE([O,oo) if and only if : given T > 0, there exist numbers p(T)

and M(T) such that x = JxI > p implies Ivij ...... k(x,t)l < MXe

for every t (0,T.

Conditions (a) and (b), which are partly redundant but

mutually consistent, could be weakened somewhat at the expense

Recall that Q may be open or closed.



562(25)/21 13

of more elaborate smoothness assumptions. Note that the field

histories belonging to a regular viscoelastic state may possess

finite Jump-discontinuities with respect to time at t=O.

Addition of states and multiplication of a state by a

scalar constant are defined as follows. Suppose = [u,,_J and

' = [u',e',o_'] are states on ew(-oo,oo). Then

+ j. = [u+u.,C+_ ,,O+d,]

= (1.26)

Further, we define the derivative of a state = [u,,c_] with

respect to the k-th cartesian coordinate (in a giver. coordinate

frame) by means of

J, k u ,k, ,k1, (1.27)

provided the requisite space-derivatives ui,k, ij,k, and dij,k

exist.

The uniqueness and the reciprocal theorem of linear

viscoelasticity play a particularly essential part in the

analysis to follow. For this reason we include here statements

of both of these theorems.

Theorem 1.4 (Uniqueness theorem). Suppose

S= [u,e_,_ ( , G1 , a2 ,_), 12
', (1.28)

Further, let

u = u' on BX(-o,co) , S = S' on B2 x(-,), (1.29)
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where B1 and B2 are complementary subsets of B. Then

[u,e,!.] = [u',e',_' + [w,0,0] on Rx(_oco), (1.30)

where, for every (x,_t)CKX(-oo, Co ),

w(x,t) = a(t) + W (t)Ax with a, wEH , (1.31) 5

so that w represents an (infinitesimal) rigid motion of the

entire body.

Volterra's [11] proof of the preceding uniqueness theorem

was spelled out in detail in [I] (Theorem 8.1) with limitation to

bounded regular regions of space. The extension of this proof to

unbounded (exterior) regions offers no difficulties in the

presence of the regularity assumptions (1.24) which imply further

that e(x,") = O(x - 2 ) as x-+ co, uniformly on every interval [0,Tj

Theorem 1.5 (Reciprocal theorem). Let

= _

= (1.32)

Then, for each t C ( -co, O),

[S*du'](x,t)dA + f [F*du'J(x,t)dV =
R

f [S'*du](x,t)dA + f [F'*duJ(x,t)dV =
B R

f [6_*de'](x,t)dV= f [:'*de](x,t)dV . (1.33)
R R

5 Throughout this paper the symbols "." and "All are used to
indicate scalar and vectorial multiplication of vectors,
respectively.
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A proof of this theorem, valid for bounded regions,

appears in (1] (Theorem 7.4); its generalization to exterior

regions is a trivial matter.

Finally, we cite a result that furnishes an extension to

viscoelasticity theory of the Papkovich-Neuber stress functions

in classical elastostatics (see Theorem 9.2 of [1l).

Theorem 1.6 (Generalized Papkovich-Neuber solution).

(a) Let Qbe open and bounded. Let F EH'1 (Q) be vector-

valued and assume GVE H2 with Gv(O) > 0 (v=l,2);

(b) Suppose q E H3'1 (p) and JE H3 'l(e) are a real-valued

and a vector-valued function, respectively, such that

V24 x.f , v. I1 f on fex(-oo, o) (1.3)6

where

f = F*dG-ll*d(2G1+G2 )-'; (135)

(c) Define a state [u,,_] on Qx(-co,co ) by means of

u = V(q.+x.)*d(G1+2G2 ) - 4i*d(2G 1+G2 ) (1.36)

in conjunction with (1.17) and (1.19),(1.20).

Then

S= [u,e,_]EV(1,l,G2 ,_F). (1.37)

The completeness of the foregoing solution to the field

equations was established in Theorem 9.4 of [1].

6 V is the spatial gradient operator and V2 the spatial
Laplacian operator.
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2. Kelvin's problem in viscoelasticity theory: the basic

singular state. Higher-order singular states.

In the current section we deal first with the problem of

a concentrated load applied at a point of a viscoelastic medium

that occupies the entire space E. This problem is the counter-

part in viscoelasticity theory of Kelvin's problem in elasto-

statics and its solution supplies the fundamental singular solu-

tion of the field equations under present consideration.

Kelvin's solution of his problem, which was first

published without proof in [12) (1884), was later deduced by

Kelvin and Tait ((13), p.227 et seq.) through a limit process

that takes as its point of departure an elastic solid subjected

to distributed body forces. This limit definition of the notion

of an internal concentrated load in classical elastostatics is

sketched in somewhat greater detail by Love (5] (Art.130) and

was made fully explicit in (8], which may serve as a guide for

the generalization to be attempted here. The theorem to which

we turn now is intended to serve a dual purpose: first, it aims

at a mathematically precise and physically natural unique charac-

terization through a limit process of the singular problem at

hand; second, it furnishes the explicit solution to the problem

thus formulated. To facilitate the statement of this theorem we

first agree that ap(X ° ) denotes an open sphere with the radius p

centered at x and adopt

Definition 2.1 (Limit definition of a concentrated load). We say

that if) is a sequence of body-force distributions that tends to
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a concentrated load L applied at x° if x°G E and L GH1 is

vector-valued, while (e) has the following properties:

(a) for every n (n=l,2,...) Fn is a vector-valued function

with

F1 ,H2 l(E) , = on (E-n),(-oo,oO), (2.1)

where ton} is a sequence of "load regions" characterized by

Un Un(Xo ) n--> 0 as n--> co; (2.2)

(b) f Fn(x,.)dV -- L as n -- > , uniformly on (O,T]

gn

for every TE [0,oo);

(c) the sequence of functions t0n}j, defined b

,n f I (_,)IdV on (-oD,co) (n=l,2,...), (2.3)
Un

is uniformly bounded on [0,T] for every Tq [0,oo).

We are now in a position to turn to

Theorem 2.1 (Viscoelastic Kelvin-state). Let Fnj e a sequence

of body-force distributions that tends to a concentrated load L

applied at x° . Let GV I? with GV(O) > 0 (v=1,2). Then:

(a) there exists a unique sequence of states (InI such

that
jn , n' n an 0,g)(~ , )n u ,,nE(,G l ,  1,2,...); (2.4)

(b) n converges to a limit state I as n--> ao, uniformly

on Rx(-o,T] for every bounded E such that x°0 4 and every

T E(-co,o);
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(c) the limit-state J=ucd]Is independent of the
partiular: choice ofthe so uence &I and - inthe sense of

Theorem 1.6 - is generated by the stress functions qf, *l defined

t h r o u g h p ( x t ) = 0 , i ( x , t ) N O( 2 5
87E IX-X01(25

for ever- / 1 0 and ever-y tG=( -cco),A where

f -L~0 1 *d(20 1+G2)-l on (-co.,co). (2.6)

±ecall t he (viscoelastic) Kelvin-state corresponding~

to a concentrated load L applied at xO and to the relaxation

functions A2

Proof. Note that the existence of the Stieltjes inverses Gil

(2al+a2)1' is assured by Theorem 1.2 and the present hypotheses

on ov(v-1,2). Define two sequences of functions [,nIand

by setting, for every n(n=1,2,-..) and all (A,t)E Ex(-on,oo),

,n(x~t) if ~C(1t) d

fn n dV A (-7)

fn = 1r*dG-f*d(2G +0 1 on Ex(-oo,co). (2.8)

7A subscript attached to an "element of volume" or an "element
of area" in a vol~ume or surface Integral indicates the
appropriate space variable of integration.
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Thus en(",t) and ±n(.,t) are Newtonian potentials of mass distri-

butions over Vn. It follows from (a) in Definition 2.1,

Theorem 1.1, and a trivial extension of Lemma 9.1 in [i1] that

n nEH3'I(E) and that
v2cpn .1 x.fn ' 2*n _1 fnonE(-o.o(29

2 onEX(-oo,co). (2.9)

Consequently and because of the behavior of the integrals in

(2.7) as x -- > co, the functions n and n, when used as stress

functions in conjunction with Theorem 1.6, generate a state

jn = [un en, d0n] that meets (2.4). The uniqueness of )n is

immediate from Theorem 1.4. Thus part (a) of the theorem under

consideration has been confirmed.

Let J = [u,_E,_S] be the state generated by the stress

functions T4 in (2.5). Choose W such that x° W, choose

T (O,oo), and hold i;'[O,T] fixed for the remainder of the

argument. In order to establish parts (b) and (c) of the

theorem it suffices8 to show that, as n --4 oo,

un -- > R I En -> e , ? --->_c unifoimly on Wx[O,T]. (2.10)

By virtue of Theorems 1.6, 1.3, however, (2.10) follows if we

show that for a fixed choice of the coordinate frame, as n --> oo

and uniformly on 6jx[0,TJ,

dOb,'erve that both I and in vanish identically on Zx(-oo,O).
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In n _ n _._

f ' , (2.11)

Since all of (2.11) may be established by strictly

analogous means, we shall demonstrate merely that

jn _4 as n -4 co , uniformly on 0, T]. (2.12)

To this end we infer from (2.5),(2.7) that for (x,t) x[O,T],

8[r(xt) -t(x,t)] =_In(xt) + jn(xt), (2.13)

provided

4rl(x1t) 1f L]f(j,t)dV '

I_ xt o n [l-2°l 1x[ (2.14)

In(x,t) = 1 [f(t) -j fn(j,t)dV] .

-2 - Ix-x0  - gn -

Accordingly, it is sufficient to show that

n -> 0 as n --- >oD, uniformly on jjw(0,T]. (2.15)

In view of (2.8), the first of (2.14) becomes

i_(x,t) = n[ - - 1  ](f*do](§,t)dV (2.16)

for all (x,t)ix[O,T], if one sets

G = aGII d(2GI+02) "I on (-co,co). (2.17)1 *d(201 .12 )

Now, by the hypothesis underlying the present theorem and (a) in

Definition 2.1, there is an N > 0 such that -Qnln is empty when

n > N. Consequently, for n > N and (x,t)Eix[OT], the volume
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integral (2.16) is proper. This entitles us to reverse the order

of the process of space-integration and convolution in (2.16)

when n > N, as is readily seen with the aid of Theorem 1.2, (a)

and (g) in Theorem 1.1, and the available regularity of the

functions Fn and Gv(v=l,2). Hence

= IdG on UWx[O,T] (n > N), (2.18)

where

S 1 ](,t)dV[ (2.19)

and clearly _n is continuous on Wx[O,T]. From (2.18) follows the

estimate, valid for n > N and fixed T > 0,

n <I In, G(-ToT) on jx[0,T], (2.20)
S x[ 0, T+T 0]

where 1(-T0 ,T) is the total variation of G on [-T0 T]. On the

other hand, one draws from (2.19) that

Ifn(x,t)I < max I1 1 1 Jfn( ,t)IdV (2.21)
- C r 1, I-_i°l IK-11 n

for every (x,t)e×x[O,T+T ]. But, in view of (c) in Defini-

tion 2.1, the integral in (2.21) is bounded uniformly for all n

and all tE[O,T+To], whereas the coefficient of this integral

tends to zero uniformly as n --* co for all xCje because of (a)

in Definition 2.1. Consequently fn --.> 0, as n ---> co, uniformly

on Wx(0,T+To] and hence (2.20) implies the statement concerning

I1 in (2.15).
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other hand, one draws from (2.19) that

.In(xt)I < max i1o 1 I fn( it)IdV (2.21)

for every (x,t)e x[O,T+T ]. But, in view of (c) in Defini-

tion 2.1, the integral in (2.21) is bounded uniformly for all n
and all tE [O,T+To], whereas the coefficient of this integral

tends to zero uniformly as n -> oo for all x because of (a)

in Definition 2.1. Consequently In--> 0, as n -->co, uniformly

on x[O,T+T0 ] and hence (2.20) implies the statement concerning

I, in (2.15).
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By virtue of (2.6),(2.8), and (2.17), the second of (2.14),

after a permissible reversal of the processes of space-integration

and convolution, yields
I=(2,t) - f ( " - _n n(1, -)dV1*dG(x, t) (2.22)

1 x-x0  Qrl

for all (A,t)r x[O,T]. The assertion concerning In in (2.15)

now follows from (b) in Definition 2.1 together with Theorem 1.3.

This completes the proof.

Conditions (a) and (c) in Definition 2.1 trivially imply

(c')j (-xO)A Fn(x, .)dV --->0 as n --> co, uniformly on [O,T
Qn

for every TE [O,co). It is natural to ask whether the seemingly

artificial requirement (c) may be replaced by (cl) without

impairing the conclusion in Theorem 2.1. That this is not

possible is clear from Theorem 4.3 in [8], on passing to the

special case of the elastic solid. Indeed, if (c) is replaced

by (c') in Definition 2.1, one can construct a sequence LFn)

of body-force distributions that tends to a load L = 0 at x_

and yet generates - in the sense of the limit process underlying

Theorem 1.2 - a limit state other than the null-state. Require-

ment (c) does bacome superfluous, however, if Fnel is restricted

to body forces that are, at every instant, parallel and of the

same sense. In this special case one has

t) IF(x,t)l i(t) for all (2,t) nX[0,o), (2.23)

k(t) being a unit-vector, and (a),(b) are readily found to imply

(c), in Definition 2.1.
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From here on let ta denote a unit-vector in the x.-

direction. If L = he, in Theorem 2.1, we call the limit state

I the normalized (viscoelastic) Kelvin-state (corresponding to

a load in the xa-direction applied at x° and to the relaxation

functions Gi,G2). Moreover, we denote the value of this state

at (x,t) by

Ja(xt;xo) [ua(x,txo),ea(x,t;x°),da(x,t;xO) (2.24)

with the understanding that all superscripts not otherwise

specified henceforth have the range of the integers (1,2,3).

Evidently, for every constant vector a,

"(A, ;xo+a) = Sa(x-a,t ;xo), (2.25)

whence in particular

ja(xt;xo) = ja(x-xot;O). (2.26)

We now record the cartesian components of displacement

and stress belonging to Ia(x,t;O). These components are easily

obtained on setting L = he, and x 0 = 0 in (2.5), by recourse to

(1.36), (1.17), (1.19), and (1.20). In this manner one arrives at

ua (xt;o) = 1 [j2J 1(t) Ibai + xajl+ 3Q1(t)(bi-i W, 7X~ X .X

1j(X,t;O) = LXaXiJ[2h(t) - 3Q2 (t)] (2.27)

+ Q2(t) [b ai Xji+bajXl-bi alj If

where x = xI = xk , as before, and J1 ,Q, 3 Q2 are auxiliary

response functions defined by
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= 1 1 = (2(1+G2)- , Q = Q *dGl on (-oo,oo).(2.28) 9

In the particular case of an elastic solid one has

h = 2li~h , 0 2 3 xh , 1-h (2.29)V'Q1 Q2  , 2 = 4V+ 3J 2 ' ~ ' J ~ ~ i + 3 x ~ 2 4 r F ~ ' J ( .

provided . and x stand for the shear modulus and the bulk

modulus of the material, respectively. In this instance (2.27),

for all x 4 0 and 0 < t < 0o, reduce to the analogous formulas

appropriate to the normalized elastostatic Kelvin-state (see,

for example, equations (5.4) in (8]).

We take up next a theorem that summarizes certain

relevant properties of Ja(x,t;O). For the sake of convenience

in stating this and subsequent results we introduce the symbol

E for the open region consisting of all points of the Euclideanxo

space E with the exception of the point x. Further, we shall

simply write E' in place of E when x0 = O, so that E' denotes

the complement of the origin with respect to the entire space E.

Theorem 2.2 (Properties of the Kelvin-state). The normalized

Kelvin-state Jd(x,t;O) has the properties:

(a) ua,j', H' ,l(E ) and I" - [u1,_ea ] a y(S, l, 2 ;

(b) J Sa(x,.;O)dA =e on (-oo,co)

where Il i any closed regular surface surrounding the origin and

9 Note that Jl is the creep compliance in shear (see Theorem 3.3
in (1]).
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S is the traction vector of ja on that side of n which faces the
origin;

(c) f XA sA(x,.;O)dA = 0 on (-o,c);
I

(d) ua(A, .;0) = (x - l ) , _a(xj.;0) = O(x "2 ) as x -- 0,

uniformly on [O,T] for ever- TC0, co).

Proof. Property (a) is immediate from the specific form of the

stress functions generating J , exhibited in (2.5), and from

Theorem 1.6. To confirm (b), use the second of (2.27) and note

that because of (a) the surface 11 may be restricted to be a

sphere centered at the origin. Property (d), which characterizes

the order of the displacement and stress singularities at the

load-point x = 0, follows at once from (2.27), whereas (c) is

readily found to be implied by (a) and (d).

In the treatise literature on elasticity theory the

original Kelvin-problem is frequently formulated on the basis

of the elastostatic counterpart of (a),(b),(c) in Theorem 2.2.

As was pointed out in [8], such a direct formulation of the

problem fails to determine its solution uniquely. Similarly,

(a),(b),(c) do not furnish a unique characterization of the

viscoelastic Kelvin-state la(,,t;O) since - as we shall have

occasion to see shortly - there exist viscoelastic states

(distinct from the null-state) that are regular on E'x(-oo,co)

and possess self-equilibrated singularities at the origin. In

this connection we mention further that the viscoelastic Kelvin-

state jac(,t;0), whose displacements and stresses are exhibited
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in (2.27), may alternatively be obtained directly from the corre-

sponding elastostatic state through a purely formal application

of the well-known correspondence principle that links the linear

theories of elasticity and viscoelasticity.I0 However, this

elementary method for deducing the viscoelastic Kelvin-state

does not assure the truth of Theorem 2.1, from which the singular

state in question derives its intrinsic physical significance.

We turn now to a discussion of the higher-order singular

viscoelastic states that may be generated through a single space-

differentiation of the Kelvin-state. Thus let ]G(x,t;x ° ) once

again be the normalized viscoelastic Kelvin-state introduced

previously and define a set of nine viscoelastic doublet-states

lca(Lt;e) = [ (x,t;x°),._P(x,t;x°),d.u(x,t;x°)] (2.30)

by means of

40(2'ta °) = ) ja(j,t)_ for (x,t)EE' xo(-oo,co).(2.31) n

A physical interpretation of SaP is easily established. Indeed,

(2.31) implies

cP(2it;Ao) = lim [.[(J(xQ-op,t;x°) - ° (232)

10 For the analogous treatment of the problem of the half-space

under a concentrated surface load perpendicular to the
boundary, see Lee [14).

11 Recall (1.27).
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which, because of (2.25), is equivalent to

al(xt;_o) r lim - (x,t x °-e ) -; e_,t;_) ] .(2

From (2.31) and (2.26) follows

1c2P(x,txo) = jcP(_x-xo,t;O). (2.34)

We list next the cartesian components of displacement and stress

belonging to jaP(x,t;O), which may be computed from (2.27) with

the aid of the defining relation (2.31).

ua(x't;O) = U[2Jl(t)+3Ql(t)]biaxp

+nx [J()3 1 (t)](q ,1(t) ] 6 x 6

ii Ox3 [2h(t)-3Q2(t)][ ix2 - bpiXaXJ (2.35)

-6 Pxax1 -6axixIj + Q2 (t)[b a 1 3xj -6 x2 )

+ 6, 1 (3Xixp-bX 2 ) - bi(3xep-b , 2 )]]

Here JIQ 1 ,Q2 are again the response functions given by (2.28).

The subsequent theorem is a trivial consequence of (2.31),

Theorem 2.2, and the explicit formulas (2.35).

Theorem 2.3 (Properties of the doublet-states). The doublet-state

jaO(x,t;O) has the properties:

(a) uP,aP 0 HoI((E,) and

I ' P = [u...P,ap, P I ] C- "f(EtI'G, 2 ) ;

(b) f SaP(x,";O)dA = 0 on (-co ,m),
n
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where n is any closed regular surface surrounding the origin and
SaP is the traction vector of Ja on that side of fI which faces

the origin;

(c) f xASap(j, • ;O)dA = b eap h on (-00,0o),

where b apy designates the components of the usual alternator;

(d) RaP(I,.;O) = O(x-2),ep(I,.;O) = O(x"3) as x >O,

uniformly on (O,T] for every TE[0,o ).

Properties (a),(b),(c) were to be anticipated intuitively

because of the physical meaning attached to the doublet-states

by (2.33), and in view of (a),(b),(c) of Theorem 2.2. As is

apparent from (b) and (c) in the present theorem, the stress

singularity of j'(x,t;O) at the origin is statically equivalent

to a couple or to null depending on whether a / P or a = P. For

this reason we call 3a0(x,t;xO) a doublet-state with moment or a

doublet-state without moment, according as a / 0 or a = P.

As in elasticity theory, it is expedient to introduce

two particular linear combinations of doublet-states. Thus we

designate by

jO(x,t;xO) = [uO(x,t;xo),EO(x,t;o),90(xt;x0 )] (2.36)

the state defined through

gO(,,t;xO) = Saa(x,t;x °) (237)12

12 The summation convention is henceforth understood to apply also

to repeated superscripts and to repeated indices that appear
once as a subscript and once as a superscript, provided these
indices have the range (1,2,3).
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and call it the state appropriate to a (viscoelastic) center of
0compression at x . F rther, we denote by

(x,t",x°) = (Xt;xO),_(Xt,x. .o,,-,x,t;x°)] (2.38)

the state defined through

1 ( ) = b _ t;x), (2.39)
r (2Et;x) 2 a

which we address as the state appropriate to a (viscoelastic)

center of rotation in the x.-direction at x° .

From (2.37), (2.39), (2.35) follow

uO (_,t;O) = 4 xiiQ (t) , 1 2. )

00 (A't;O) = (2 Ox.ko)2)2(
-j (3!;5 1 x)Q(t

uO (xt;o) = -'i b i lx J1 (t)

(2.41)
(x, t;0) (b x xj+ajx xi)h(t)

The implications of Theorem 2.3, as far as the properties of the

states appropriate to a center of compression and a center of

rotation are concerned, are immediate. In particular Jo(x,t;O)

has a self-equilibrated singularity at the origin, whereas the

singularity inherent in T(x,t;O) is statically equivalent to a

couple whose axis is the xa-axis. Specifically,

fJg(,.;O)dA = 0 , f A^(,.;o) = e h on (-co,co). (2.42 )
II
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Through successive space-differentiations of the Kelvin-

state a(A,t;x) one may evidently generate an infinite aggregate

of viscoelastic states that are regular on E 0x(-co,oo) and
x

possess singularities at x 0 of progressively higher order.
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3. Green's states. Integral representations for the solution

of the fundamental boundary-value problems.

As a prerequisite for the treatment of the main subject of

this section we require two lemmas concerning certain integral

properties of the viscoelastic Kelvin- and doublet-states dis-

cussed in the preceding section. To shorten the formulation of

these lemmas, and for future convenience, we make the agreement

that Zp(X) henceforth denotes a spherical surface of radius p,

centered at the point with the position vector x° . Further,

QP(x°), as before, denotes a spherical neighborhood of x0 , with

the radius p. Finally, we shall write Z and Q in place of

Z(X) and 0p(X), when x° =o.

Lemma 3.1. Let Q be a neighborhood of a point x°E E. Let

I= [2,U,SJ ) YIGl f

and suppose xt;x ° ) is a normalized viscoelastic Kelvin-state.

Then for fixed x° and each t C(-co,oo):

(a) lim J [S.dua ](x,t)dA = 0, (3.1)
p -> 0 EP(xe)

(b) lim J (_a*du](x,t)dA = ua(x°,t), (3.2)
P -4 0 ZP(1 0 )

provided S and S4 are the respective traction vectors of I and

Ja on that side of Zp(xO) which faces x° .

Proof. Without loss in generality assume x = 0. Also, since

I(_x,t) and la(x,t;o) vanish for all (x,t)Ce-x(-o,0), it
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suffices to consider t 1 0. Thus choose tE [O,oo) and hold it

fixed throughout the remainder of the argument. Further, let

Po > 0 be such that EZPO C Q.

With a view toward proving (a), define Ii(p) for all

p E (O,p0 by means of

Ii(P) - E Sdua](x,t)dA, (3.3)

whence and fzom (b) in Theorem 1.1,

If.(P)I < I [_?d*Sj(xt)ldA. (3.4)

Now note that

C H1 =.i.4 (-o,t) _5 I(o)1 + t maxtll , (3.5)

where -L7(-oo,t) is the total variation of * on (-cD,t]. From

(3.4), (3.5), in view of (1.15), (1.8), and the usual estimates

of Stieltjes and Riemann integrals, follows

II(p)I < ( ax IualJ[m xIs(.,o)l + t max I 14p 2. (3.6)
ZrPXCO.tJ E - EPX[O'OtJ -

The leading team within brackets is 0(p-1) as p --) 0 because of

(d) in Theorem 2.2, whereas the second term within brackets is

uniformly bounded for all pE(0O,p ] by virtue of (1.21) and the

p00regularity of rij on 6 PO [O,t]. Hence (3.6) implies (3.1).

Consider next part (b) and define 4(p) for all p C(o,p o ]0

through

I [s*du](_,t)dA. (3.7)2 p -
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Setting

(x,') = u(x, ) - u(o, ) (3.8)

for all (_x,)Gabc(-oo,.o) and invoking once more (b) in

Theorem 1.1, one has

II'(p) - uo(Ot)l < I f [!dqSa(_,t)dAl

+ I[u(O,.)*d J Sa(x,.;O)dA](t) - u,(O,t)l . (3.9)

The second term in the right-hand member of (3.9) vanishes by

virtue of (b) of Theorem 2.2 and () of Theorem 1.1. To

estimate the first term proceed as in part (a). In this manner

one is led to

I (P) - ua(o't)l _

max Ivl][max I_(",o;O)1 + t max I~Sol 14p 2. (3.10)

The leading term within brackets is o(l) as p -) 0 because of

(3.8) and the continuity of u on P [O,t]. On the other hand,

the second term within brackets is O(p-2 ) in view of (1.21) and

(2.27). Thus (3.2) follows and the proof of Lemma 3.1 is

complete.

Lemma 3.2. Let e be a neighborhood of a point x0 E E. Let

j - I Q^=(1, 01 , 02,_F)

and suppose JaP(A,t;x) is a viscoelastic doublet-state corre-

sponding to the relaxation functions G1,G2 . Then for fixed x°

and each t G (-a, co ) :
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(a) lrm f (SduP3](xt)dA = 2 (xOt) + X°,t),
p-0oZP(x 0) - 5 (3.11)

(b) lim f [SaP*du](x,t)dA =0- 0 o ZP ( xo ) -

up,a(xOt) - 8 (xO,t) + Xap(x 0 ,t), (3.12)

where

(x°,t) = [6 e (x,t) + 2[(e -2b e )*dQ2 (x°,t))S5 a Y( 3 .1 3 )

while S and Sap are the respective traction vectors of S and

Sap on that side of Z (xO ) which faces xO .

Proof. As in the proof of Lemma 3.1, assume x° = 0, hold

t G[0,oo) fixed, and let p0 > 0 be such that E C .
0

Consider first part (a) and define Ia(p) for all

P C(0, Po] through

I p(P) f S [S*dua0](x,t)dA. (3.14)zp-

In view of the present hypotheses, one draws from (3.14) in

conjunction with (2.35), (1.21), the divergence theorem,

Theorem 1.1, and (1.18), after a straightforward computation,

that

II (P) = I' (P) + IP (p), (3.15)

where

app
I2 (P) f-- [ dapd(2Jl+3Q1 ) ](xt)+

+ +

+ [CS ii .d(2JI-3Q,) ](x,t) [2(bijx +aj ix(3jxix)

- b ap 6ij -6aj i ]I dV, (3.16)
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I 13 (P) = {[Fa*d(2J +3QI)](x,t)x +
p3xxx

+ [F i*d(21-3Q1)](--'t)[ p2  6 i ax-bixaJ]dV. (3.17)

By Definition 1.3 and (a) in Theorem 1.1, the convolutions

entering the integrand in (3.16) are (for fixed t) continuous

on Qp, whereas the integrand in (3.17) is o(i) as x -- > 0 so that

I( p) = o(l) as p --4 0. Consequently (3.15), (3.16), (3.17)3
furnish

irps= 1 1 U[ad(2Jl+3Q)(0,t)

+ [i J*d (2J 1 - 3 Q1 ) ] (O,t ) [2( 5i jxax +' cjxixp+b jxixa )

- 5ap 6 j-ajbPi]}dV + o(i) as p-)0. (3.18)

Now carry out the space integration in (3.18) and use (d) of

Theorem 1.1, as well as the second of (1.18), to obtain

iIp(P)  -13 [6,x{ J+,](O,t)

- bP[pkii*d(2Ji-3Qi)](O,t)J+ o(l) as p -- >0. (3.19)

Conclusion (a) follows from (3.19), (3.14) after an elementary

computation involving the use of Theorem 1.1, Theorem 1.2,

equations (1.19),(1.20),(2.28), and the definition of Xpgiven

by (3.13).

Turn to part (b) and define I for all p(, ]

through
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I P~p) [SaP*du](X,t)dA. (3.20)

4 (P) P - _ 3.0

The required limit of IaP(p), as p --> 0, may be confirmed by

an argument which is quite similar to that employed in establish-

ing part (a). In this connection one needs to make use of the

fact - implied by (a) in Definition 1.3 - that, for each

(_x't) 5Px[O'OO ),

u(x,t) = u(Ot) + u A(Ot)xj + U(x,t) (3.21)

with U C2 1 (Qp x[O,oo)) and

U(x,.) = O(x2 ) as x-4 0, (3.22)

uniformly on [O,t]. Further details of the proof may safely be

omitted.

Lemma 3.2, by virtue of (2.39), at once yields

Corollary 3.1. Let x°,t, and I meet the same hypotheses as in

Lemma 3.2. Suppose P (x,t;x° ) is the state appropriate to a

center of rotation. Then for fixed x° and each tC (-oo,oo):

(a) lim I [S. ](_x,t)dA = 0,
--> 0 Z(xo)

(b) lim f [P*du](x,t)dA = wa(_°,t),
P-0 P(xo) -

where w is the rotation field history of j, i.e.

w =IVAU on i ~x(-coo), (3.23)

while S and r are the respective traction vectors of I and

-a on that side of Z (x) which faces x° .
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It is worth mentioning that conclusions (a),(b) in

Lemma 3.1 and Corollary 3.1 do not involve the relaxation func-

tions of either the singular or the regular state under consider-

ation. Also, the conclusions in Lemma 3.1 and Corollary 3.1

hold true even if the relaxation functions of the singular state

are distinct from those belonging to the regular state.

We are now in a position to deduce the integral repre-

sentations which constitute the main objective of this section.

With a view toward a representation theorem applicable to the

first fundamental boundary-value problem, in which the surface

displacements are prescribed over the entire boundary for all

time, we introduce

Definition 3.1 (Green's states of the first kind). We call

= (t ,(t)

I O(Lta_) =[ (,tx, (,_),a(,t_]

the Green's states of the first kind for a (regular) region R

and relaxation functions G1,G 2 if and only if: for all

(1,t;x) EIX(-oo,oo)xR with j xa° a
j(_ ,ta) =l(ta) + J~tX

10P(.ktax) = - .[1P(,t;x) + P(.,t;x)] + ((3t24)

where 14(K,t;x) and JaP(_,t;x) are the normalized Kelvin-state

and the doublet-state, corresponding to GIG2; further
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for each x c R, are states such that

(a) a (., ;x), 1"P(',';2) C *(I[,GI,G2),

(b) gl(',';x) = 0, _4Ia(-, -;x) = 0 on Bw(-oo,oo).

Observe that requirements (a),(b), because of (3.24) and

Theorem 1.4, for fixed xER, uniquely characterize the states

G(. ";x) and ra(..;x) as the respective solutions of two

first boundary-value problems for the region R. Consequently,

the Green's states ja and are also uniquely determined by

the foregoing definition. With reference to this definition we

state

Theorem 3.1 (Integral representation of the solution to the

first boundary-value problem). Suppose

,= [u,e,_,_]E (R,GG 2,_E)• (3.25)

Let r"(j,t;x) and a(jt;x) be the Green's states of the first

kind for the region R and relaxation functions G1 ,G2. Then, for

each (x, t) C Rx(-oo, o ),

Ua(xt) = f [P*di'GQ]( ,t;x)dV - f [9G*du](',t;x)dA- , (3.26)13

p(xt) = SR [f*duGa](_',t;x)dV- - J(aP*dul( ,t;x)dA. (3.27)
R - B

13 Here and in the sequel we conveniently write [ *cTj](,t;x) in

place of [T(.,.;x)* (.,';x)](£,t) if I(,.;x),j(, x) in
suitable functions o position and time. Cf. the notations
adopted in (1.9),(1.15).
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Proof. Choose (x,t) C Rx(-co ,) and hold (x,t) fixed throughout

the following argument. Let p0 > 0 be a number such that

Z (x)CR. For each pE(O,p0 ] denote by R the regular region

R-?p (x) with the boundary BUZ P(x). Bearing in mind Defini-

tion 3.1, as well as Theorems 2.2, 2.3, observe that

(', "_), a(., •x)V(pG, 2). (3.28)

Next, apply the reciprocal theorem (Theorem 1.5) to the

pair of states 1, 1a(', ;x) and to the pair I, IaP(.,.;x) in their

common domain of regularity px(-oo,co). Because of (b) in

Definition 3.1, this yields

f [j*d:(&,t;x)dA. + J(f*d](&,t;x)dVt
zP(x) RP

f -- *du](-,t;x)dA + f [S(*du](L,t ;x)dA , (3.29)

B zP(x)

f [R*dOu41(L,t;x)dA~ + f [F*dda~](l,t;x)dV(

f [_*du](_,t;x)dA + f [SG(P*du](L,t;x)dAt . (3.30)
B - EP(x)

Now proceed to the limit as p -> 0 in (3.29) and (3.30),

using Lemma 3.1 and Lemma 3.2, respectively.I4 This confirms

(3.26),(3.27) and completes the proof.

14 Recall from (3.24) that the singular part of ja(., ;x) and of

are a Kelvin-state and a linear combination of
doublet-states, respectively. On the other hand, the regular
parts of the Green's states under consideration trivially f-l
to contribute to the limits, as p -- 0, of the surface integrals
over Ep(x) in (3.29),(3.30).
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The relevance of Theorem 3.1 to the first boundary-value

problem stems from the fact that the right-hand members of (3.26),

(3.27) - apart from elements of the Green's states a ap-

involve only the body forces and surface displacements of the

state I . Integral representations for the stresses belonging

to I , are immediately obtainable from (3.27). If 11, in

particular, coincides with the entire space E, then Ia = a on

Ex(-co,co )xE, according to Definition 3.1, and (3.26) reduces to

uu(x,t) = S [F*dua](j,t;x)dV • (3.31)

E

We now further examine the Green's states entering

Theorem 3.1 and establish

Theorem 3.2 (Symmetry of the Green's states of the first kind).

Let ja([,t;x) and ja (.,t;x) be the Green's states of the first

kind for a region R. Then, for each (, t,x) Rx(-oo,oo)xR with

i(£,t;x) = Cp(At;1) , (3.32)

N tax) = ;Yb(x't;0) (3.33)yb'= ap-

Proof. Choose and fix (j,t,x) ERx(-co,o)xR with 1 7 x. Let

PO > 0 be a number such that ZPO()CR, ZPO(X)CR, while

E P( )OZPO (x) is empty. Then, for each p (0,p0o], the region

R = R-% (L) - (x) is regular and, by hypothesis and

Definition 3.1,
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1,(.-,.;2_), (R(,'P , 0(1, , G2), (3.34)
oap( " ._x ,yb(".;.) ., ,G ,G ) (3.35)

To complete the argument, apply Theorem 1.5 to each of the

pairs of states appearing in (3.34) and (3.35), respectively,

bear in mind (b) in Definition 3.1, and proceed to the limit as

p -> 0, making use once again of Lemma 3.1 and Lemma 3.2.

We turn now to the second boundary-value problem (surface

tractions prescribed over the entire boundary for all time) and

adopt

Definition 3.2 (Green's states of the second kind). We call

I (_,t;x) = ['ta)__

I P (1, t a_) = [Lup ( O, t_),_P (is t ;_),arp (1 , t a_) 1o

the Green's states of the second kind for a (regular) region R,

relaxation functions GIG 2 , and - in case R is bounded - for

.a (fixed point) xG.R if and only If: for all

(§,t,x),E 11(-coc )xRwthjx, wt I X0,

t) c a(,t;x) + .t;x)

+ c[_j1(1£,t;e-) + bapy(xp-x 0 (£t;-&) ,  3.)

lap(L,t;_x) = - [ (_( t;x) +I JP(_,t;x) I + Ppt)

where 1a((,t;x),4aP(jt;x), and r( _,t;x) are the normalized

Kelvin-state, the doublet-state, and the state appropriate to

a center of rotation, all corresponding to G1,G2 , while c=l

when R is bounded and c=O when R is unbounded; further,
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ia(l.t = ,_ t.

GP(i,tlx) =[_C(_tx) tXc(,;x]

for each xER, are states such that

(a) yp(.,.;x), EV7(.,.;_x) EVIGI,G2 ),

(b) sa(.,x) = o, _P(.,';x) = 0 on Bx(-o,,oo),

and

(c) when R is bounded,

T'&, - ;x) = W (xO,;x) = 0 on (-co,co),

a(e, -O';X) = ZO (xO,';X) = 0 on (-o o),

in which ja,Ziare the respective rotation vectors of a, lap.

Definition 3.2 is, to an extent, analogous to Defini-

tion 3.1. The regular parts of the Green's states in

Definition 3.1 are uniquely characterized as solutions to first

boundary-value problems for the region R. In contrast, '(,;x)

and JGP(.,;x), for fixed x ER, are in the present instance each

the solution of a second boundary-value problem for R, as is

apparent from (a), (b), and (3.36). According to Theorem 1.4,

the solution to such a problem is unique - except for an

arbitrary additive (infinitesimal) rigid motion of the entire

body, when R is a bounded region.15 Condition (c) in Defini-

tion 3.2 serves to eliminate this indeterminacy from TO and tpP.

15 If R is unbounded, the additive rigid motion is precluded by

the regularity condition (c) in Definition 1.3, which requires
the displacements to vanish at infinity. Note also that in
the first boundary-value problem the additive rigid motion is
precluded by the boundary conditions, regardless of whether
or not R is bounded.
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Thus, for a given xO , the states j a,1'3P are fully unique and

hence, because of (3.36), the same is true of the Green's states

4 , I of the second kind. Further, when R is unbounded (c=O),

both I' and c3 are entirely independent of xO.

If R is bounded (c=l), the singular part of fa in (3.36)

is considerably more complicated than its counterpart in (3.24)

of Definition 3.1 for reasons to be made clear presently.

Indeed, a necessary condition that the second boundary-value

problem characterizing P possess a solution when R is finite,

is that for each x R,

f ( ,'x)dA = 0, fIA (, ;x)dA = 0 on (-oo,o),

B B (3.37)

i.e. that the surface tractions governing YC(.,;x) be self-

equilibrated.16 The requirement (3.37), in turn, because of (b)

and (3.36), implies that the system of singularities involved

in the singular part of must be self-equilibrated. The

supplementary singular part of 14, which carries the multiplier

c and whose singularities are located at ( = x°, serves the

purpose of assuring the self-equilibrance of the complete system

of singularities at _ = A and = xo. This claim is readily

verified with the aid of (b),(c) in Theorem 2.2 and (2.42).

16 Note from (a) that (,;x) must meet the equilibrium
equations in the absence of body forces.
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Conditions (3.37) are no longer necessary for the exist-
ence of ya when R is unbounded, in which case c=O and the

singular part of J is merely a normalized Kelvin-state corre-
sponding to a concentrated load at = x. Finally, we observe

that the pair of singularities at [ = x in the singular part of

1 0 is always self-equilibrated, regardless of whether or not R

is finite, as is immediate from the second of (3.36) and (b),(c)

in Theorem 2.3. We may now proceed to

Theorem 3.3 (Integral representation of the solution to the

second boundary-value problem). Suppose

I= [u,_E,.j] C- ' (R, 0I, G2,) (3.38)

and, if R is bounded,

u(x°, ") =w(x°,) = 0 on (-co,co), (3.39)

where W is the rotation vector belonging joj , while x°c R.

Let la(i,t;x) and 4UP(j,t;x) be the Green's states of the second

kind for the region R, the relaxation functions GI,G 2 A and - in

case R is bounded- for x° . Then, for each (xt)G Rx(-o,,oa),

f (F*deaJ](jt;A)dV +fSd (,;~ ~ .0

£cap(x't) = [ F*dGU4(1,t;x)dV- + [-jS*du1]( ,t;x)dA-" (3.141)
R - B

Proof. Note that if I satisfies (3.38) with R bounded, it can

always be made to meet (3.39) as well by addition to u of a rigid

displacement history. The indentity (3.41) and, if R is unbounded,

also (3.40), may be confirmed by an argument strictly analogous
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Conditions (3.37) are no longer necessary for the exist-

ence of ja when R is unbounded, in which case c=O and the

singular part of P is merely a normalized Kelvin-state corre-

sponding to a concentrated load at x. Finally, we observe

that the pair of singularities at = x in the singular part of

I P is always self-equilibrated, regardless of whether or not R

is finite, as is immediate from the second of (3.36) and (b),(c)

in Theorem 2.3. We may now proceed to

Theorem 3.3 (Integral representation of the solution to the

second boundary-value problem). Suppose

I = Iu C-JYMG1,G2,F) (3.38)

and, if R is bounded,

u(x°,.) =w(x,.) 0 on (-co,co), (3.39)

where W is the rotation vector belonging to j , while x° E R.

Let j(',t;x) and $ O( .,t;x) be the Green's states of the second

kind for the region R, the relaxation functions GlIG2A and - in

case R is bounded - for x° . Then, for each (x,t)GRx(-co,co),

a(xt) = S [F*da](,t;)dV! + f[S*d*'](,t;)dA{. (3.40)

~~~ (x, ) =I (F j(j,t;A)dVj + f[S*dui~]R,t.-)dA . (3.41)RI B

Proof. Note that if I satisfies (3.38) with R bounded, it can

always be made to meet (3.39) as well by addition to u of a rigid

displacement history. The indentity (3.41) and, if R is unbounded,

also (3.40), may be confirmed by an argument strictly analogous
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to that employed in the proof Theorem 3.1. We therefore give a

detailed derivation merely for (3.40), assuming R to be bounded.

Consider first the special case in which x = x0 and con-

clude from (3.36) that then

ja(..;xo) =1 a(.,.;xo) on 1&(-oo,oo). (3.42)

But (3.42), together with (a),(b),(c) of Definition 3.2 and

Theorem 1.4, implies that r(',";x) is the null-state. Hence,

and in view of the first of (3.39), the identity (3.40) is

trivially met when x = x.

Next, hold (x,t) E R(-a ,co ) fixed and assume x ' x° .

Let p0 > 0 be a number such that ZPO (X)CR, ZPO (x)C R, while

IPO (X)_ zPO (x) is empty. Then, for each p E(O,p 0 ], the region

- R-U(_)-5P(x ° ) with the boundary BUZp(_)UZp(_ 0 ) is regular

and, by hypothesis and Definition 3.2,

i CL( ", -";A_) Q.- (ly , 02). (3.43)

Now apply the reciprocal theorem (Theorem 1.5) to the pair of

states I and 3a(.,.;x) in their common domain of regularity

x(-oo,oo). Because of (b) in Definition 3.2 one thus arrives at

f [f*4uj'](j,t;x)dV, + f [S*u:Im 1 (10 t;x) dA +

I Soi ~)d + f [(8.du( t;x) dA~
E P(x) I P(e )

f [2'*u](.,t;x)dAI + f [_ S.u](jt;x)dA(. (3.44)

E.P (x) E (xo)
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Proceed to the limit as p -- 0 in (3.44), taking into account the

nature and location of the singularities entering the right-hand

member in the first of (3.36) and using Lemma 3.1, Corollary 3.1,

as well as (3.39). This yields the desired result (3.40).

It is instructive to examine the influence of the choice

of the fixed point x in Theorem 3.3. A change in this choice

evidently affects u merely within an additive rigid displacement

history and therefore leaves I unaltered. On the other hand,

such a change alters the basic structure of Oa (whose singular

part depends upon the location of xO ) but results only in the

addition of a rigid displacement to u , which is easily seen to

have no effect on the right-hand member of (3.41).

The Green's state PP of the second kind conforms to the

symmetry relation (3.33) in Theorem 3.2, as may be verified by

precisely the same scheme used to prove (3.33) originally. In

contrast, 4a of Definition 3.2 is found not to obey (3.32) because

of the asymmetric manner in which I and x enter the supplementary

singular part of P' in the first of (3.36).

Theorem 3.3 owes its importance, as far as the second

boundary-value problem is concerned, to the fact that the right-

hand members of (3.40),(3.41) - apart from elements of the

Green's states of the second kind - involve exclusively the body

forces and surface tractions appropriate to I. Analogous integral

representations for the stresses belonging to I follow at once

from (3.41) with the aid of (1.19),(1.20).
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We have so far confined our attention to integral repre-

sentations appropriate to the first and second fundamental

boundary-value problems. An integral-representation theorem for

the mixed problem, which contains Theorem 3.1 and Theorem 3.3 as

special cases, may be deduced by obvious similar means and with

but superficial complications.

Theorem 3.3 may be used as a basis for a mathematically

precise and physically meaningful definition of the notion of a

concentrated surface load. The latter concept may be defined

through a limit process applied to a sequence of regular visco-
~17

elastic states that corresponds to distributed surface tractionas

in analogy to the limit treatment of internal concentrated loads

contained in Section 2. We shall, however, not pursue this issue

further and shall turn instead to a more basic application of the

integral representation for the solution to the second boundary-

value problem supplied by Theorem 3.3.

17 See [8], Section 7, for a detailed analysis of concentrated

surface loads in elastostatics.
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4. Saint-Venant's principle for viscoelastic solids.

Saint-Venant's principle in the classical equilibrium

theory of elastic solids was originally introduced by

Saint-Venant (15] in connection with - and with limitation to -

the problem of extension, torsion, and flexure of prismatic or

cylindrical bodies. The earliest universal statement of the

principle is apparently due to Boussinesq [16](p.298 ), whose

formulation has since become traditional. Love [5](p.132),

adopting Boussinesq's version, states the principle as follows:

"... the strains that are produced in a body by the application, to

a small part of its surface, of a system of forces statically

equivalent to zero force and zero couple, are of negligible

magnitude at distances which are large compared with the linear

dimensions of the part." The far-reaching importance of the

principle stems, of course, from the fact that It presumably

entitles one to relax the boundary conditions in the second

boundary-value problem of elastostatics and to replace the given

surface tractions, at least in part, by statically equivalent-

but analytically more manageable - loadings.

As was first pointed out by von Mises (61, the conven-

tional statement of Saint-Venant's principle is In need of

clarification. Von Mises observed that the sentence cited

involves a dual comparison, which is not fully made explicit.

Thus, the statement in question asserts that the strains due to

self-equilibrated loads are "negligible" at distances which are
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large compared to the size of the load-region, the tacit implica-

tion being that these strains are small compared to strains pro-

duced by loads which are not statically equivalent to null.

Von Mises noted further that one cannot in general meaningfully

speak of strains "produced" by non-equilibrated loads since the

equilibrium problem for given surface tractions and for a bounded

region (in the absence of body forces) has no solution unless the

tractions acting on the entire boundary conform to equilibrium.

He concluded that for a finite body it is necessary to consider

the Joint effect of the tractions applied to several (at least

two) distinct portions of the boundary.

Two additional criticisms of the traditional version of

Saint-Venant's principle are equally self-evident. Trivially,

the strains arising from loads applied to a finite part of the

surface of an unbounded elastic body are arbitrarily small at

points sufficiently far removed from the region of load applica-

tion, regardless of whether or not the loading is equilibrated.

On the other hand, it follows from the superposition principle

of linear elasticity theory that the strains and stresses at a

fixed point of an elastic body, produced by equilibrated surface

loads, may be made as lare as one pleases by choosing the

magnitude of the loads sufficiently large, regardless of the

size of the region of load application.

The foregoing observations suggest an interpretation of

the conventional statement of Saint-Venant's principle that may
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roughly be phrased ao followsl8 : Let the loads acting on an

elastic body be confined to several distinct portions of its

boundary, each lying within a sphere of radius p, and suppose the

loads remain bounded as p -- O. Then the strains at a fixed

interior point of the body are of a smaller order of magnitude

in p, as p --> 0, when the tractions on each load region are self-

equilibrated than when they are not.

That this is the meaning intended by Boussinesq [16] is

apparent from his own efforts to justify the principle. With

this objective in mind he examined the strains at an interior

point of a semi-infinite elastic body that is subjected to a set

of concentrated loads applied normal to its plane boundary.

Assuming the points of application of the loads to lie within a

sphere of radius p, he then showed that the order of magnitude

of the strains in question is p if the resultant force is zero,

and p2 when the resultant moment also vanishes.

Von Mises [6] demonstrated with the aid of two examples,

which involve tangential as well as normal surface loads, that

the traditional version of Saint-Venant's princinle (interpreted

as above) requires amendment in order to be generally valid.

Guided by these counter-examples he conjectured a modified

Saint-Venant principle which was later on formulated and proved

in (7]. It is this modified principle which we now seek to

extend to viscoelastic solids.

18 This interpretation is taken from (7]; it is an elaboration

of von Mises' [6] earlier interpretation.
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In order to avoid an unduly lengthy statement of the

theorem to be established we introduce two preliminary definitions

that will permit us to phrase the underlying hypotheses concisely.

In this connection we recall our previous agreement to the effect

that Qp(x) always stands for an open sphere of radius p

centered at xO.

Definition 4.1 (A set of families of contracting load regions).

We sa that An (0 ( p < Po; n=1,2,...N) is a set of N families

of load regions on the boundary B of a (regular) region R, which

contract to N points n(B, if and only if for ever p E(O,p)

and every n(n=l,2, ...N):

(a) Ap = ?P(jn)nB and this intersection is connected;

(b) Amr)A n =0 for m / n (m=1,2, .N);p p
(c) Ap C n, where n (the "embedding region" of A n)

P~- p
is a subset of B and the position vector I of Hn admits the

parametrization

i= fn() for c = (a l c 2 )D&, (4.1)

Dn being an open, bounded, simply-connected plane region, while

-- C2(D -- fn)1() --,,L2 f 0 on Dn .  (4.2)19

A typical member of the set An (0 < p < p ; n=1,2, ... N),

for fixed p and n, is shown in the accompanying figure, in which

19 nWe use the notation fn p (a) = m fn(q) (p=l,2). No summation

with respect to n is intended in P(4.2).
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and Q designate the endpoints of the position vectors f and

1, respectively, whereas x is the position vector of a point P

in R. Note that according to the first of (4.2) each subregion

In of B possesses continuous curvatures. Therefore the points

En (n=l,2,...N) are necessarily distinct regular points of B;

moreover, the boundary B - wthin each of the N embedding

regions - is, by implication, required to exhibit a higher

degree of smoothness than that automatically assured by the

assumption that R is a regular region of space. The second of

(4.2) asserts merely that On is the image under fn of the origin

of the parameter-plane ("a-plane"). Finally, the third of (4.2)

is equivalent to the condition that at each point of Dn at least

one of the Jacobians of the mapping fn fails to vanish, so that

fn defines a regular curvilinear coordinate-net on lin .

Definition 4.2 (Associated family of viscoelastic states). Let

An (0 < p < Po; n=l,2,...N) be a set of N families of load regions

on the boundary B ofa reaion R, which contract to N points

CnEB. We say that

t(x,t,p) = [u(x,t,p),E(x,t,p),d(x,t,p)] (0 < p < Po)(4.3)

is a family of viscoelastic states on lx(-oo,oo) corresponding to

loads on n if and onlyI f for each p C (0,p

(a) pG
N

(b) S(,,p) =0 on (B-U A)(cxo)(b) N''P =o (0 ,0
n=l P

(c) when R is bounded,
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and Q designate the endpoints of the position vectors f and

_, respectively, whereas x is the position vector of a point P

in R. Note that according to the first of (4.2) each subregion

en of B possesses continuous curvatures. Therefore the points
0(n (n=l,2, ...N) are necessarily distinct regular points of B;

moreover, the boundary B - within each of the N embedding

regions - is, by implication, required to exhibit a higher

degree of smoothness than that automatically assured by the

assumption that R is a regular region of space. The second of

(4.2) asserts merely that En is the image under fn of the origin

of the parameter-plane ("a-plane"). Finally, the third of (4.2)

is equivalent to the condition that at each point of Dn at least

one of the Jacobians of the mapping fn fails to vanish, so that
fn defines a regular curvilinear coordinate-net on Hn .

Definition 4.2 (Associated family of viscoelastic states). Let

An (0 < p < Po; n=l,2,...N) be a set of N families of load regions

on the boundary B of a region R, which contract to N points

CnE B. We say that

(x,t,p) = [u(x,t,p),<(x,t,p),(x,t,p)] (0 < p < po)(4.3)

is a family of viscoelastic states on Rx(-oo,oo) corresponding to

loads on A n if and only f for each p C (0,p

(a) p) CM, 0, G2);
N

(b) s(.,',p) =0 on (B - U An)x(-oxoo);
n=) P

(c) when R is bounded,
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u(x,.,p) - w(x,.,p) 0 on (-a3,oo),

where w is the rotation vector of and x°0 R;

(d) 1§1 is uniformly bounded on Bx(-oo,t]x(O,po ) for

every t '[O,oo).

Furthermore we adopt the notation

n(tP) = S( ,tp)dA p
^P (4.4)

jf(t,P) = f jA^S(-,t.9p)dA,

whence Ln(t,p) and en(t,p) stand for the resultant force and the

resultant moment about the origin, of the tractions S(-,t,p)

acting on Ap n

Assumption (b) requires the surface tractions S(.,t,p)

of the state 1 (.,tp) to vanish on the complement with respect to

B of the union of the load regions An (n-1.2....N), for all time

and every p E(O,po ). It is worth noting that no regularity

restrictions other than (d) are placed on the family of states

I as far as its dependence upon the parameter p is concerned.

Indeed, but for notational complications, it would have been

equally adequate for our purposes to introduce a set of sequences

of contracting load regions and an associated sequence of visco-

elastic states corresponding to loads on these subregions of the

boundary. We may now proceed to formulate
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Theorem 4.1 (A Saint-Venant principle for viscoelastic solids).

Let An (0 < p < Pc; n=1,2,...N) be a set of N families of load

regions on the boundary B of a (regular) region R, which contract
0

to N points Cn13, and assume N > 2 if R is bounded. Let

I(x,t,p) (0 < p < Pc) be a family of viscoelastic states on
IT(-co,co) corresponding to loads on An. Let x CR and t G(-oo,cox).

Further, assume the existence of the Green's states of the second

kind for the region R (Definition 3.2). Then, uniformly on (-co,t],

u(x,.,p) = o(p6 ), L(x .,p) = 0(p6 ), d(x,. ,p) = 0(pb ) as p -+ 0,

(4.5)
where b=2. Moreover:

(a) 6 - 3 if

Ln = 0 on (-ootjx(O,po), (n-l,2,...N); (4.6)

(b) 6 = 4 if

0n = , ,fnjS . )dA = 1
A P (4.7)

on (-o,t]x(O,p0 ), (n=l,2,...N);

(c) b - 4 if

.= 0, M_ - 0 on (-oo,t]x(O,po), (n=l,2, ... N), (4.8)

provided

S( ,;,p) =0n(.,P)kn(,) (no sum) (4.9)

for all (.'j,p) EAnx(-(ot]x(O,P_) and n=l,2,...N. Here on is
- - 0
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scalar-valued, while kn is continuous with kn( ) I unit vector

such that

kn. n  0on (-co,t] (n=l,2,...N), (4.10)

v being the unit normal of B at 0n.

Proof. By hypothesis, (a) in Definition 4.2, and Definition 1.3,

I(x,tp) is the null state for each (,t,p)ERx(-ooO)x(Op );

accordingly the conclusion is trivial when -co < t < 0. Thus

choose (x,t)c Rx[O,oo) and hold (xt) fixed for the remainder of

the argument.

From (a),(b),(c) in Definition 4.2, (b) in Definition 4.1,

Theorem 3.3, and (1.19),(1.20) follows, for all

('r,P) G (-OD, 00) (O,Po0),

ui(x, ,p) = Z i(_xP),
n=l

N n (xc,p), 
(1.n)eij(A,-C,P) Ei Pe j-

N
N nj (A",' P

ij(,, )  n=1 i

where, for each n (n-l,2,...N),

AnI

e(,rp n J [ S*daiJ]( xp ) dA~ (41.12)20
I n

A 1

0 n(_,,P) =[,n *dol ](A, , p0)

+ 1 F *j[ i(G -")](_A,,,p).

20 We write [S 1i](L,t;,p) to denote the convolution-value

[iS(','.,p)*d~i( .,'}x)]( it)* etc. See also (1.9),(1.15), as
wil as Footnote No-. A.
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Here _1(., ;x) and iJJ(L,,r;x) are the displacement field histories

appropriate to the Green's states of the second kind for the

region R, the relaxation functions GIA2, and - in case R is

bounded - for x° (See Definitions 3.2, 4.2).
n n

In view of (4.11),(4.12) it is natural to call ui,elj ,
andol (n=.,2,...N) the displacement, strain, and stress contri-

butions arising from the loading on the n-th family of load

regions. We mention parenthetically, however, that when R is

bounded the "contribution-state" in = [un.,n,dnj (n=l,2,...N)

possesses an independent physical significance as the solution

of a second boundary-value problem if and only if the tractions

on each individual family of load regions are permanently self-

equilibrated, i.e. Ln = Mn = 0 on (-cx,oo)x(O,p 0 ) for n=l,2,...N.

In this case, or when R is unbounded, one has for each p G (O,p )

and each n (n=l,2,...N),

In(., P*,p p) C(,G1,2) (4.13)

with

Sn(,,p) = S(-,,p) on , 1n
- P (4.14)

(.,.,P) = 0 on B-A, J
which characterize jn uniquely. Also, clearly, when R is bounded

either the loading on each family of load regions is permanently

self-equilibrated or there exist at least two such families for

which this is not true.
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We now examine a typical displacement contribution

un(x,r,p) with a view towa.rd establishing the order of magnitude

of u(x, ,p) as p -- 0. For this purpose hold n (n=l,2,...N)

fixed and observe on the basis of (c) in Definition 4.1 that,

for all Ell nnX(-oo'oo),
; = _i(fn(a), ; x) = in(, _x), a=(a l,a 2 ),(4 .15)

where the functions Kin(, -x) are defined on DnY(-oo,co) and

evidently

zin(,';x) = 0 on Dnx(-oo,O). (4.16)21

As is clear from the behavior of i(,;x) on Bx[O,o) implied

by Definition 3.2 and the smoothness of fn stipulated in the

first of (4.2), the functions

.In(a., ;x) in (417)

exist and are continuous for all (a, )EDnx[O,oo); furthermore,

throughout this domain & in(a,;x) and In(a, ;x) are twice

continuously differentiable with respect to al,a2 .

In view of the preceding observations, Ein(, ;x) for

each T G (-o ,co ) and all a DP admits the Taylor expansion

pi;(,;,) + _I x) in(a, ;x) (4.18) e2

where we have used the notation

21 Recall that xrcR is fixed.

22 Here and in the sequel summation with respect to p (p=l,2)

is implied when p is a repeated index.
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°in(,;x) Ein(_;x) (p.19

The remainder Qin(SZ, ;x) in (4.18) evidently possesses the same

degree of smoothness for all (a, )E Dnx[o,oo) as does

Furthermore,

iln(.,.;x) = 0 on Dx(-oo,O), (4.20)

whereas

- (a ;x) 0(), @(a,;x) = 0(a 2 ) as a Eal -- 0,

(4.21)

uniformly on (-oo,t].

Before continuing the argument we note from (4.1),(4.2)

that the mapping fn is one-to-one in a neighborhood of the origin

of the parameter-plane. Indeed, (4.1),(4.2) together with (a)

in Definition 4.1 imply that there exists a number pl(O < p1 < Po)

and a function in mapping A' onto a neighborhood of the origin

of the a-plane, i.e.

a = Y_(n), (4.22)

where n is independent of one of the components of I and is

continuously differentiable with respect to the remaining two.

In order to avoid cumbersome notation and since n is being held

fast, we shall hereafter write a(l) in place of n( ). It follows

from the regularity of the inverse mapping under consideration that
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max O() - 0(p), J dA = o(P 2 ) as p --> 0. (4.23)
rE AP An

P

Now substitute from (4.15) into the first of (4.12) and

use (4.18),(4.22). After a brief computation involving permissi-

ble reversals in the order of the processes of convolution and

surface integration one thus obtains, for all (r,p) (-oo,t1w(OPl),

un(x, ,p) =n(x,r,p) + I n(x,,,p) + In(x,r.,p), (4.24)

where

I "(,~P) I ,AnI'nx,'r. ,pi) = S(L., ,p )dA*d. (• ;x)J;) ,

An

Also, by (4.16),(4.19) and (4.20),((.25),

I2n(x,',') = 0 on (-oo,O)x(O, P). (4.26)

k

Our next task consists in estimating the order of

I' nn in()5

magnitude of I n(x,'r,p) as p --> 0. Consider first 1i3i (.5

3 A 3

and observe with the aid of (1.15) and (3.5) that, for all

( ,p) E [0, t]o(OP()6
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II"n(x, .P)l <
3

( max I.E(.,.,p)I][ max loinca~c),O;x)l
Anx[O' t ]_An

+ t( max ]lin(a(J),lx)I f dA. (4.27)

By (4.27), (d) in Definition 4.2, (4.23), and (4.21), there exist

constants P2 (0 < P2 < pl) and C such that, for all

G P 10[O t ] (OP 2),1

1in(x, ,p)I < Cp4 + Ctp 4 . (4.28)

This conclusion, together with (4.26), assures that

Iin(x ,.p) = O(p ) as p -40 , (4.29)
3 -

uniformly on (-oo,t]. Proceeding similarly with the first two

of (4.25) - bearing in mind (4.17),(4.19), and the continuity of

Sin(o, ";x) and .in(, ;x) on [0,t] - one arrives at
Ip -

zi (_i,.,p) = o(p2 ) as p -4o,
. (4-.30)

41(x, _,p) = o(p 3 ) as p --> 0

uniformly on (-co,t]. But (4.29),(4.30), because of (4.24) and

the first of (4.11), imply the first of (4.5) with 6=2.

We now turn to the remaining assertions concerning the

order of magnitude of the displacements as p --> 0, which pre-

suppose various restrictions upon the loading beyond those
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implied by Definition 4.2. Thus suppose (4.6) holds so that the

resultant force of the loading on each family of load regions

vanishes up to the instant t. In this case, Iln(x,,") vanishes

on (-co,t]x(0,pl) according to (4.4),(4.25), and hence (4.24),

(4.29) imply

un(x, .,P) = in(x, .,p) + 0(p 4 ) as p -> o, (4.31)

uniformly on (-cox,t]. The conclusion under case (a) is

immediate from (4.31) and the second of (4.30) in conjunction

with the first of (4.11).

Next consider case (b), which is characterized by (4.7).

Here (4.6) continues to hold, whence (4.31) remains valid. In

addition, the second of (4.7) requires the three first moments

(about the coordinate planes) of the tractions on each family of

load regions to vanish up to time t.

Equations (4.1),(4.2) insure that _fn on Dn admits the

Taylor expansion
fn() =n + fn + = (4.32)23

where
_On f ~o n °-f() =  0 n fn (0) (p=l,2). (4

1 ,LP (4P 33)

The remainder jn C2 (Dn) and

n(_a) = 0(a 2 ) as a - l - 0. (4.34)

Since =_() _ , equations (4.32),(4.7), in view of the

first of (4.4), at once furnish

23 Recall Footnotes No. 19,22.
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On~JS~ 1 i~a()A=-. n~(, d (.35)

for all ( ,p)C-(-co,t]x(OiPl). On estimating the right-hand

member of (4.35) with the aid of (4.34),(4.23), and (d) in

Definition 4.2, one infers that

fl p J S(j,-rP)ap(j)dA = 0(p4 ) as p--> 0, (4.36)

An
p

uniformly for all rE(-oo,t]. Now, (4.36) may be regarded as a

system of three (inhomogeneous) linear algebraic equations in the

two unknowns

IQ, ip)a p (J)dA (p-1,2).

An

Furthermore, because of the last of (4.2), the coefficient-matrix

of this system has the rank two. Hence (4.36) imply

i S(j,.,p)ap(J)dA = 0(p4) as p --> 0 (p=l,2), (4.37)

Anp

uniformly on (-c,t]. From (4.37) and the second of (4.25), in

turn, follows the estimate

2in(x, .,p) = O(p4 ) as p -0 0, (4.38)

uniformly on (-co,t]. Finally, (4.38) together with (4.31) and

the first of (4.11) imply the first of (4.5) with b=4.
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Consider at last case (c). Here the ordinary equilibrium

conditions (4.8) are presumed to hold, whence the loading on each

family of load regions is self-equilibrated. In addition, as

required by (4.9), the tractions on each family An (n fixed) -

up to time t - are now supposed to form a parallel system at

every instant and, according to (4.10), must not be parallel to

24 Othe tangent plane of B at Kn .

Since (4.8) include the assumption (4.6) underlying

case (a), equation (4.31) is satisfied also in case (c). Further,

equations (4.8), by virtue of (4.4) and (4.32), yield

O n , j, -1 ~~id - J n (2(1)) AS(i,-z,p)dA (4.39)n An

for all (t,p)E (-co,t]x(0,pl). From (4.39) one draws25

fi A [ S(jTp)aV(j)dA = 0(p4) as p -4 0, (4.40)

AnAp

uniformly for all zE(-oo,t]. Next, substitute from (4.9) into

(4.40) to obtain

?n (A ) e 0n(I,.,p)a (J)dA = 0(p4) as p -> 0,

An (4.41)

24 It follows from the assumed smoothness of the boundary B

within each embedding region In that the instantaneous trac-

tions on An, for fixed n and sufficiently small p, cannot at

present be parallel to B anywhere within An.

25 Cf. the estimate of the right-hand member of (4.35).
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uniformly for all rE(-co,t]. Scalar multiplication of (4.41)On

by fO (q-l,2) leads to

[(f f On ( J 4n(L,, ,p)ap(.L)dA = 0(p 4 ) as p -4 0 (p=l,2),

(4.42)

uniformly for all rE(-cot]. Now note from (4.2) that

fll/ f12 is a non-zero vector that is normal to the boundary B

at Qn. Consequently and by the hypotheses on kn, the coefficient

of the integral in (4.42) is uniformly bounded away from zero for

all tE(-o,t], whence - using (4.9) once more -

r S(I,.,P)cp (!)dA = 0(p4) as p -. 0 (p=1,2), (4.43)

uniformly on (-co,tj. But (4.43) is identical with (4.37) and

thus the first of (4.5) with 6=4 follows in the same manner as

in case (b).

This completes the proOf as far as the required orders

of magnitude of the displacements are concerned. To reach the

corresponding conclusions regarding the strains one may proceed

through the identical argument, taking the second of (4.11) and

the second integral representation in (4.12) as the point of

departure. Since the foregoing reasoning in no way depended upon

the specific nature of the singularities inherent in the Green's

displacement 0_ entering the first of (4.12), the desired con-

clusions for the strains are immediate from those we have
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established already. Finally, the requisite orders of magnitude

of the stresses follow trivially from those pertaining to the

str t because of the last of (4.11) and the third of (4.12).

The proof of Theorem 4.1 is now complete in its entirety.

Observe that the content of Theorem 4.1 is not weakened

if the conclusions b-2, b-3, b= are replaced by 6 k 2, b I 3,

6 > 4, respectively. The essential significance of the first

conclusion (=2) lies in the fact that the displacemento strains,

and stresses (at a fixed interior point of the body) are bound

to vanish at least to the order O(p2 ) as p -- 0 in the absence

of any restrictions upon the loading beyond those implied by

Definitio I.2. In particular, this order of magnitude prevails

regardless of whether or not the loading on each family of load

regions is or is not self-equilibrated.

In case (a), where (4.6) is met, so that the resultant

force belonging to each family of load regions vanishes, a

reduction of the (maximum) order of magnitude from O(P2) to O(p3)

is guaranteed. But (4.6), though sufficient, is clearly not

necessary for 6-3. Analogous comments apply to the further

reduction from O(P3) to O(p4 ) assured in case (b) and case (c).

Conditions (4.7) evidently imply the ordinary equilibrium

conditions (4.8). The converse is however not true, whence (4.7)

represent a stronger restriction upon the loading than do (4.8).

On the basis of the traditional statement of Saint-Venant's

principle in elastostatics, discussed at the beginning of this



562(25)/21 66

section, one would expect (4.8) by themselves - i.e. in the

absence of the additional requirement (4.9),(4.1o) that the

tractions on each family of load regions be parallel and not

tangential to the boundary - to guarantee the reduction to b=4

from 6=3 in case (a). That this expectation is not borne out by

the facts is apparent from von Mises' [6] counter-examples, which

refer to the special case of the elastic solid.

The preceding conclusion has a counterpart in the theory

of basic singular states dealt with in Section 2. Thus consider

the Kelvin-state .a(x,t;O) and the doublet-state J4(x,t;O).

Both of these states are regular for all (x,t)C-(E-R)x(-oo,oo),

where R is an arbitrary (regular) region containing the origin,

and both states may be regarded as induced on (E-R)x(-oo,co) by

their respective surface tractions on the boundary n of E-R.

Let La, Ma and Lap, Map denote the resultant force and the

resultant moment about the origin of the tractions on II belonging

to Ij and JaP, respectively. Then, from Theorem 2.2 and

Theorem 2.3, on [Ooo),

La o, 0,

LaP - 0, _M1P d o (all3),Lap -ma Y'} (4.44)
Lap=o, 0 I 3 =o (mp4).

Next consider the rate of decay of the corresponding stresses at

infinity (i.e. "at distances large compared to the size of the

region of load application 1"). An inspection of (2.27),(2.35)
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confirms at once that for every t G[O,oo), as x s I - ,

dG(At;0) = O(x- 2 ), o(A,t;0) / O(x- ) (6 > 2),

e(_At;o) = o(x'3), oe(a,t;o) /O(x - b ) (b > 3)1 (a) (4.45)

eP(A,t;O) = O(x-3 ), _P(x,t;o) /O(x - b) (b > 3), (a=P)

Consequently, whereas the stresses decay more rapidly when the

resultant force of the loading on n vanishes than when this is

not the case, the additional vanishing of the resultant moment

fails to give rise to a further reduction in the order of

magnitude of the stresses as x -+ oo.

The Saint-Venant principle contained in Theorem 4.1 may

be extended to accommodate concentrated surface loads with the

aid of a corresponding generalization26 of Theorem 3.3. If this

is done, one finds that Theorem 4.1 continues to hold true

provided the conclusions b=2, b=3, b=4 are replaced by 6=0, b=1,

b=2, respectively. On the other hand, the extension of the

principle to anisotropic viscoelastic materials would require an

integral representation for the solution of the second boundary-

value problem appropriate to such materials and analogous to that

deduced by Fredholm (173 in the linear equilibrium theory of

anisotropic elastic solids.

Acknowledgmt. The authors are greatly indebted to M. E. Gurtin,

who read the manuscript and supplied numerous most helpful

criticisms and suggestions.

26 Cf. the remark on concentrated surface loads at the end of

Section 3.
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